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OPTIMAL ESTIMATION EQUATIONS FOR UNKNOWN BANDLIMITED SIGNALS#

G. H. Hostetter

Electrical Engineering Department
California State University

Long Beach, California 90840

Abstract

The problem of approximating a bandlimited
but othervise arbitrary signal by a free solution
to & linear, time-invariznt, differential equa-~
tion is solved. Optimal solutions for the equa-
tion parameters are derived for equations of any
dynamic order. Applications are discussed and
examples in state recomstruction and inverse

filtering in the presence of unknown disturbances
are given.

1. Iatroduction

In practice, one often has only partial in-
formation regarding the character of certain sig-
nals that are present in or act upon a system,
examples being load torque disturhances 1irn hcavy
machinery and electronic noise in certain semi-
conductor devices. For either signal processing
or feedback control, it is important to be able
to reconstruct such signals from output measure-
ments alone. The question of this reconstruction
is solved here for the class of such signals which
are bandlimited, but otherwise unknown. The ap-
proach involves optimal approximation of the band-
limited signal, in the sense of integral-square
bandpass error, as the homogeneous solution of a
linear, time-invariant, ordinary differential
equation with unknown initial conditions. The
optimization determines the coefficients of the
differential equation thus specifying the model.

The organization of the paper is as follows.
In Section 2 further motivation is giver for this
work by showing how the theoretical problem arises
from consideractions in the application of observ-
ers and observer-controllers in feedback control.

The signal modeling problem is formulated in
Section 3, where it is cast as an equivalent new
filtering problem. In Section 4, a performance
criterion and constraints are chosen, and the opti-
mal solutions are found in closed form.

Two application examples are presented in
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Section 5, and conclusions are given in Section 6,

2. Motivation: Observing the State of
Systems with Unknown Inputs

Observer Design

When the state of a plant is not available to
a control system for feedback, it may be estimated
by a dynamic observer [1-3] or state estimator
[4]. Providing that the plant 1s completely ob-
servable, an observer which monitors the plant in-
puts and outputs may be constructed to generate
signals which converge arbitrarily rapidly to the
system state, within the practical limitations of
wmeasurement noise and parameter errors.

When an observer estimate of the plant state
1s uged for feedback in place cf the s3tate {tszlf,
the eigenvalues of the composite system are those
of the observer (which may be chosen by the de-
signer), together with those of the plant which
would result if the state itself were fed back in
place of the observed state.

In special cases, it is possible to observe
the state of a system without having access to one
or more of the system inputs [5-8]. Except in
these cases, it i{s necessary to have all plant in-
puts available to the observer, and this require-
ment is a severe restriction on the usefulness of
observers in many situations.

When all unknown inputs may be effectively
characterized probabilistically, optimal stochas-
tic filtering (9] is clearly indicated. In prac-
tice, however, there exist many situations, for
example, structural systems with wind gust dis-
turbances and chemical processes with reactant
impurities, in which the system inputs are unknown
(or poorly known) even in a statistical sense.

Observers Which Approximate Unknown Plant Inputs

A general method of accommodating unknown
plant inputs in observers is to represent such
signsls as solutions of constant-coefficzient,
ordinary, linear, differential equations. The
plant equations are augmented to represent the un-
known inputs, and the resulting observer generates
estimates of these inputs as well as the plant
state.

This approach began with the work of Johneon
(10-11], Pearson [12] and Davison [13-14], with-
out explicit connection to observer theory.
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Bryson and Luenberger took an observer viewpoint
of a similar problem [15] and Young and Willems
considercd a more general problem class [16].
Hoatetter and Meditch related Davison's work to
the observer approach [17) and investigated the
structure and properties of these observers in
quite some detail [18-19].

Although there are situations where an inac-
cessible input signal is known to satisfy a
specific diffcrential equation, for example power
line "hum", in most cases the differential equa-
tion for an unknown asignal will be only an approxi-
mating equation, just as are the equations which
model the plant. The question thus arises as to
a "best" approximating equation for certain
classes of input signals.

3. Problem Formulation

Representing Sipnals as Solutions to Differential
Equations

Let an unknown signal f(t) be represented as
a solution f'(t) to the scalar differential
equation - el el
nn(d f'/dt ) + an_l(d £'/de +
cee + 2,(df'/dt) + & £'= O 1)

Ideally, the unknown signal f(t) would satisfy
this differential equation exactly. But if a
solution of the equation only approximates f(t),
then
n n n-1 n-1
‘n(d £/de) + an_l(d f/de ) +

cee * al(dild:) +af = elt), (2)

where e(t) 1s an error signal, iadicative of thc
quality of the approximation.

An Equivalent Filter

The relation (2) may be viewed as a filtering
problem where f(t) is the filter input, e(t) is the
filter output and the filter transfer function is

n n-1

T(s) = as + s 1* + o0 ¢+ as + a.
One may then view the problem of determining para-
meters of an approximating differential equation
as an equivalent problem of determining parameters
of a filter, T(s).

This equivalent filter has all zeros and is
thus not realizable as a finite-dimensional dynamic
linear system [20]. But the equivalent filter is
just an analytic convenience, not the end result.

Filter Characteristics for Bandlimited Signals

1If the unknown signal £(t) is bandlimited, as
most physical signals are [20], the filter T(s) .
should be chosen to have stopband characteristics
over the range of frequencies present in f(t).*

*In linear systems of the integrating type (de-
scribed by state equations without direct input-to-
output coupling) the inputs, even 1if they are not
bandlimited, may be considered to be bandlimited
for all practical purposes as far as their effects
upon the system state are concerned.

b R i e e AR s AT il i

Were the filter transmittance zero over this
band, f(t) would satisfy (2) exactly, with e(t)=0.

The thrust of classical filter theory over
the years has been primarily toward practical,
realizable designs such as all-pole filters and
others in which the number of poles exceeds the
number of zeros in the filter transfer function
[21-22]. Well known techniques, however may be
brought to bear upon the less conventional problem
faced here.

4. Solutions for Optimal Filters
Performance Criterion and Constraints

Let the signal f(t) be bandlimited at radian
frequency W, Then a particularly useful and

common measure of the performance of T(s) as a
bandstop filter over the frequency range between
Ww=0and w= W, is

. 2
J=- !°°|T(jw)| dw.

Constraints are necessary, though, to yield use-
ful solutions, and the particular restrictions
e 0 and 8 1 will be used. The transfer

function will thus be restricted to be of the form

n-1

T(s) = s +a s + .00 + as.

n-1
Requiring T(s) to have a zero at s = 0 re-
flects the desirability of zero transmittance of
the filter for any constant component of f(t).
This 1s to say that the approximating function to
f(t), satisfying (1), includes a possible constant
component. This requirement is particularly
important in applications where signal offsets are
likely and steady-state performance is of concern.

Fixing the coefficient of the highest power
of 8 in T(s) is a simple means of avoiding the
trivial solution

LS S ees W 8y i LR -.0
and is justified by the following observation:
Since any equation (1) may be chosen in such a
way as to include'all solutions of a lower order
equation, the equation of higher order gives at
least as good an approximation to f(t) as does the
equation of lower order.

Low Order Results \\

The optimum first order filter is constrained
to have transfer function

Tl(.) -8,

which corresponds to the approximating differen-
tial equation

(df'/dt) = O,
and an arbitrary constant approximating functionm.
The optimun second order filter is found to

¢ have transfer function

tz(.) - .z.
corresponding to
@t'7ac?) = o,
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and an approximating function consisting of a
constant plus a ramp.

The optimum third order and fourth order
filters are

1,60 = 8 + Qo 215)s,
vhich has {maginary axis roots within the stopband
range, and
T,(8) = o* 4 (50 2730
wvhich is similar but with a repcated zero at s = 0,
The repeated imaginary axis roots of Tz(s)

and T,(s) indicate instability of the approximat-
ing dlfffeuntlal cquation, but such instability of
the observed "plant" is of no particular concern
in chserver design since observer eigenvalues may
be placed arbitrarily [2-3, 18-19].

Properties of the Optimal Transfer Functions

It is particularly convenient ‘at this point
to consider T(s) in the factored form

2 2
T(s) = s(sta)(s +8,s Wl)(s +82M2)...,
where the real root term (s+a) is present if T(s)
is of even order and is deleted if T(s) is of odd
order. Then
TG |2 = o?(wPa?) (u‘wlzmz-zylmzwlz)
4§ , 22 2.2
(w +82 W -Zyzu +72 )
The performance measure is
wo 2
3= 1T(Gw) | “dw
and one obt;ins
/3 = [ % (20) (*48, %P2y wiey D) ... du
o 1 1 1
Setting this derivative to zero, one has @ = 0 in

view of the nonegativity of the remaining factors
in the integrand. Further,

21/, - I:°2(wz + o?) (28,

(u‘ + Szzuz - hzuz + 122)...du,
from which it is evident that 61 = 0, and, similar-
1y, that B, = 83

ees = 0,

Taking the remaining partial derivatives such
as 3J/3y, gives the further conditions for mini-
mization™ of J, but in a difficult form. Having
derived the important result that, depending upon
the transfer function order, the optimal T(s) is
either an even or an odd polynomial, we now return
to the serial polynomial notation.

General Solution

For an even or odd polynomial,

n -2 .
T(s) = +a .8

n-4
a4

ITQw) | « o[w” - .2 w2

+ ooy

s . ...]2

n-4"

Interchanging the order of integration and differ-
entiation in taking am.t. one has
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n~2 n-4
n-2* “n-&u

3]'!‘(54;0)]2/%1 - th[w"-a S |

80 that
/%, = Zf ‘o (" nn_zmn“-z +

M-6 &
8 v - ...)dw.

Equating to zero, there results the system
of linear algebraic equations

un“'i-l un-M-J
2 a , -2 a , +
n+1-1"n-2 n+i-3 n-4
n+i+l
w .
-_o___..'
LR n+1+1
or
1 -2 1
n+1-1(wo ‘n-Z)°n+1-3(wo ‘n-4)+
et L
Y T a+i+1

1-(n-2). (n-4), ...
which may be solved to obtain (w

-4
(""o n_‘). PR

The next few optimal transfer functions that
result are as follows:

n-z) ,

() = 0° + (1.11)m°2a’ + (o.zaa)mo‘

4 2

T(e) = LN Q.20 s ©0.352)s s

-r(.)-. + Q.62 23 4+ (0. 736), .’+

- (0. 0516).» 5 B

'l' (s) = o + (1. 80)@ l + (0. 969)w ‘-‘ +

©.167)0, 6,2

In the next section, it is shovan hnv the
sbove results can be used in two signal process-
ing applications.

S.

Observing a System State
Consider the system

Examples

x; -2 1 x 1
- +] jE(v)
X, -3 0 Xy 1
' x
SN ys= [ 1 1 ] 1
' 82

where f(t) 1is an unknown input signal. The trans-
fer functions relating f(t) to the state signale
’l(t) and X, (t) are

(o) - (s + l)l(l + 28 +)
1‘2(-) « (s - l)l(c 4+ 28 +3)

respectively.
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Each of these transfer functions exhibits
frequency response which approaches -20 decibels
per decade above about 2 radians per second. If
the amplitude of the spectrum of f(t) is bounded
at high frequencies, the effects upon the state
of the high frequencies, in comparison with the
lower frequencies in f(t), will be small.

For example, if f(t) is a square wave of
radian frequency 1, the third harmonic amplitude
in x) and x, will be approximately 0.15 ss large

as the fundamental. The relative amplitude of
the fifth harmonic will be less than 0.05.

Taking w, - 10 to be the effective band lim-

it of the input signal, f(t) is approximated by
£'(t), vhere f' is chosen to satisfy the optimal
third order approximation

@e'rae’y + o 2/5)@e' 1de) = 0,
the augmented system equations become

-2 1 1 0 0

=y 6 aee 0
x'= |0 o o 1 o]|x
0 o 0 o0 1
0 0 0 -60 O
y=[1 1 0 o0 oK.

An observer of this system will provide estimates
of the system state and, if desired, of £(t).
Exanples of analog computer simulations of such
problems appear in [19].

Observing a Filtered Signal

In many practical applications, for example
in biomerdical instrumentation and econoaic model-
ing, it is desired to estimate inaccessible
signals which may be considered to be unknown
inputs to filters wherein only the output signals
are available.

One approach is to consider the unknown and
inaccessible signals to be generated, approxi-
mately, by free systems of the type (1). The
available output signals are then considered to
be produced by the larger system consisting of
the actual system augmented by the approximating
equations. An observer of the augmented system
will then generate estimates of the inaccessible °
signals [18].

Consider an inaccessible signal f(t) which
is processed by a simple low-pass filter to pro-
duce the available signal y(t) where

T(s) = [1/(s + 1)IF(s) = G(s)F ().
This filter is represented by the system
x = -x + £(t) A
ye=x.

Approximating £(t) by £'(t), where £' satie-
fies .the optimal firet order differential equation

' =0,
gives the sugmented system
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y = x(t).

An identity observer of the augmented system,
vith eigenvalues closen to be -3 and -4 1s

z -7 1 z, 6

- +
L, ~-12 0 z,

y(t),
12

and the signal z,(t) observes f'(t), and thus
provides an estidate of £(t).

The observer transfer function is

12(s + 1)
l!(c) - 2 (]
s +7s8 +12

wvhich 1s identical to that obtained by the con-
ventional means in which H(s) is chosen to be the
inverse of G(s), with additional poles added so
that it has more poles than zeros [23]. It is
particularly interesting that the methods de-
scribed here show how conventional inverse filter
techniques may be logically and easily extended to
approximations of arbitrarily high order in
multivariable systems.

In this connection, it is worth emphasizing
that the optimal approximating functions are a
constant for the first order and a constant plus
ramp for the second order, functione which sre
quite familiar in classical circuit and control
theory. The results “or the third and higher
orders, however, depend upon Wy the band limit
of the signal f(t).

6. Conclusion

It has been shown how inaccessible signals
which are taken to be bandlimited, but otherwise
arbitrary, can be suitably modeled for inclusion
in a variety of signal processing applications.
The model amounts to approximate representation
of the signal as a solution of a differential
equation with the coefficients of the latter de-
termined to minimize the integral-square passband
error of the approximation. Properties of these
spproximations were investigated and the coeffi-
cients of the representations up to order 8 were
determined. Applications of the results were
11lustrated in two examples, the first yielding
teconstruction of the state of a second-order
dynamic system which is subject to & bandlimited
disturbance signal, the second the recovery of
such a signal from output measurements alone.

In the latter case, an intimate connecticn with
inverses wvas established.

Additional research has indicated that the
approach given here can be extended to certain
problems in digital signal processing [24].
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